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Abstract— Legged robots such as hexapods have the potential
to traverse unstructured terrain. This paper introduces a novel
hexapod robot (Weaver) using a hierarchical controller, with
the ability to efficiently traverse uneven and inclined terrain.
The robot has five joints per leg and 30 degrees of freedom
overall. The two redundant joints improve the locomotion of the
robot by controlling the body pose and the leg orientation with
respect to the ground. The impedance controller in Cartesian
space reacts to unstructured terrain and thus achieves self-
stabilizing behavior without prior profiling of the terrain
through exteroceptive sensing. Instead of adding force sensors,
the force at the foot tip is calculated by processing the current
signals of the actuators. This work experimentally evaluates
Weaver with the proposed controller and demonstrates that it
can effectively traverse challenging terrains and high gradient
slopes, reduce angular movements of the body by more than
55 % and reduce the cost of transport (up to 50 % on uneven
terrain and by 85 % on a slope with 20 ◦). The controller also
enables Weaver to walk up inclines of up to 30 ◦, and remain
statically stable on inclines up to 50 ◦. Furthermore, we present
a new metric for legged robot stability performance along with
a method for proprioceptive terrain characterization.

I. INTRODUCTION

Locomotion of wheeled robots is limited by extreme ter-
rain. In contrast, legged robots have the potential to overcome
this by adapting their gaits [1]. The advantage of hexapods
compared to bipeds or quadrupeds is the static stability
during walking [2]. The stability and the range of available
gait patterns increase with the number of legs. The largest
improvement is from four to six legs. For legged robots with
more than six legs the improvement becomes significantly
smaller and the hardware cost increases [3].

When traversing rough terrain, it is crucial to control the
stability of the robot. One approach is to feedback the state of
the body to the controller and to adapt the leg positions [4],
[5]. However, additional sensors are needed for such body
regulation. Biological investigation reveals that locomotion
of running and bouncing animals can be described by a
spring attached to a mass [6] and that an elastic leg configu-
ration achieves self-stabilization [7]. Self-stabilizing refers to
stable locomotion without feedback of the body dynamics by
additional sensors [8]. The challenge of robots with flexible
joints is the time-varying displacement between motor and

1 M. Bjelonic is a student at the Faculty of Mechanical Engineering,
Technische Universität Darmstadt, 64287 Darmstadt, Germany and was with
the Autonomous Systems Lab, CSIRO, Pullenvale, Brisbane, QLD 4069,
Australia at the time of this study.

2 N. Kottege is with the Autonomous Systems Lab, CSIRO, Pullenvale,
Brisbane, QLD 4069, Australia. Correspondance should be addressed to
navinda.kottege@csiro.au

3 P. Beckerle is with the Institute for Mechatronic Systems in Mechanical
Engineering, Technische Universität Darmstadt, 64287 Darmstadt, Germany

Fig. 1. Weaver on the multi-terrain testbed.

link position. Without specific control algorithms, oscillatory
behavior and instability may occur during ground contact
[9]. Additional position encoders at the driven links increase
the hardware cost. The MIT Cheetah [8] and the COMET-
IV [10] propose a virtual leg compliance instead of adding
elastic behavior to the mechanical system. Building upon this
work, this paper introduces a low-level controller with virtual
second order mechanical characteristics implemented on a
novel hexapod robot platform named Weaver (Fig. 1). The
current of the motors are translated into forces at the foot
tips and the forces are further processed by an impedance
controller in Cartesian space. This controller introduces:

• Reactive leg control on unstructured terrain without
prior profiling of the environment.

• Self-stabilizing and energy efficient locomotion by
maintaining ground contact.

• Terrain characterization using foot tip positions.

Many of the developed hexapods are using insect-inspired
three degrees of freedom (DoF) per leg. Legged robots like
Messor-II, AMOS II, DLR-Crawler and BILL-Stick [11]–
[14] are only able to control the position of the foot tip.
The LAURON V [15] and ASTERISK [16] robot have
four independent joints. In [15] the authors show how the
fourth rotational joint in the bio-inspired leg kinematics
improves the maneuverability of the robot by controlling
the orientation of the leg in longitudinal direction. On steep
slopes the LAURON V robot decreases the torque and
increases the stability of the robot. The robot introduced in
this paper, Weaver has five joints per leg and this enables it
to control the position and orientation of the leg. In contrast
to LAURON V, Weaver copes with high gradient slopes
in any orientation, not only in longitudinal direction. An
inclination controller specifies the desired orientation of the
leg and adapts the body pose. The novel leg configuration of



Weaver and the inclination controller contribute to efficient
locomotion, increased maneuverability and stability on steep
inclines.

The rest of the paper is organized as follows: Forward
and inverse kinematics are presented in Section II, the in-
clination and impedance controller are introduced in Section
III, Section IV describes the experimental setup and shows
the results from the experiments. Section V discusses the
results and Section VI concludes the paper with insights for
extensions.

II. KINEMATICS
The overall configuration of Weaver with 30 DoF is shown

in Fig. 2. Each leg of the robot uses a yaw-roll-pitch-pitch-
pitch kinematic design. The naming convention of the joints
of each leg corresponds to the attached link name and the
structure of the leg is further illustrated in Fig. 3.

The transformation in Fig. 2 from world frame (o0x0y0z0)
to body frame (o1x1y1z1) takes into account the body’s
travelled distances x, y and z, and rotations qroll, qpitch and
qyaw. The calculation of the inverse kinematics is performed
once for each leg. In order to use the same frame for each leg,
the body frame (o1x1y1z1) is transformed to the leg frame
(or Coxa frame) (o2x2y2z2). Fig. 2 shows the relationship
between these frames for Leg 2 (middle-left leg).

A. Forward Kinematics

The forward kinematics of the leg is based on the Denavit-
Hartenberg (DH) convention. The five joint angles of each
leg in Fig. 3 are denoted by q1, q2, q3, q4 and q5. The DH
convention uses the following homogeneous transformation:

Hi
i+1 = Rotz,θi · Transz,di · Transx,ai ·Rotx,αi

=


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi

cαi
di

0 0 0 1
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Fig. 2. Structure and body dimensions of the 30 DoF hexapod.
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where cx and sx denote cos(x) and sin(x) respectively.
The superscript in the notation of Hj

i denotes the reference
frame (ojxjyjzj) and the subscript indicates the transformed
frame (oixiyizi). The DH parameters θi, di, ai and αi are
the rotation around z, translation along z, translation along x
and rotation around x, respectively. The transformation from
Coxa frame to end effector frame is

H2
e = H2

3 (q1) ·H3
4 (q2) ·H4

5 (q3) ·H5
6 (q4) ·H6

e (q5) (2)

The coordinates of the foot tip pe2 with respect to frame
(o2x2y2z2) are given by the first three elements of the fourth
column of H2

e . Table I lists DH parameters for a given leg
to be substituted in (2).

The force vector F 2
e = [Fx Fy Fz]

T and the torque
vector M2

e = [Mx My Mz]
T at the foot tip with respect

to frame (o2x2y2z2) are obtained through the static wrench
transmission using the Jacobian Je and the joint torques
Mq = [M1 M2 M3 M4 M5]T .[

F 2
e (t)

M2
e (t)

]
= (Je(q1, q2, q3, q4, q5)T )−1 ·Mq (3)

B. Inverse Kinematics

The given robot configuration is redundant since the five
DoF of each leg are only constrained by a three dimensional
position of the foot tip. In order to find a closed form
solution, the leg is additionally constrained by a desired
foot tip orientation. The control angles δd and βd in Fig. 4
constrain the orientation of the legs. Both angles fully
describe the orientation of the gravity vector ~g relative to
the Coxa frame (o2x2y2z2). The first constraint angle δd
defines the rotation around the y2 axis and the second
angle βd rotates around the current x′2 axis. The inclination

TABLE I
DENAVIT-HARTENBERG PARAMETERS FOR A GIVEN LEG.

Link θi di αi ai

Coxa q1 LC −π/2 0
Coxat q2 + π/2 LCT −π/2 0
Femur q3 − π/2 0 0 LF

Tibia q4 0 0 LTI

Tarsus q5 0 0 LTA
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Fig. 4. Control angles δd and βd describe the orientation of the gravity
vector ~g relative to the leg frame (or Coxa frame).

control algorithm in Section III determines these control
angles and the following inverse kinematics aligns the Tarsus
link (o6oe) with the gravity vector ~g (Figs. 3, 4). The
additional constraint improves the locomotion in terms of
speed and energy efficiency when traversing an inclination
by aligning the legs parallel to the gravity vector [15]. As
previously discussed, LAURON V robot is compensating for
inclinations by controlling only δd to align the last link with
~g [17]. This means it can only handle gradients along the
longitudinal axis. Weaver can compensate for inclinations
by aligning the Tarsus link with ~g at an arbitrary body
orientation by having control over both δd and βd.

Geometric observations reveal that all joints lower than the
Coxat joint are on the same plane. The normal vector of the
plane is obtained from the DH transformation and becomes

~np = [−c1 · c2,−s1 · c2, s2]T (4)

in which ci and si denote cos(qi) and sin(qi) respectively.
The equation of this plane is given by

−c1 · c2 · x2 − s1 · c2 · y2 + s2 · (z2 − LC) = 0 (5)

The first two joint angles q1 and q2 fully define the ori-
entation of the leg. By inserting the desired foot tip position
(xd2, yd2, zd2) relative to the Coxa frame (o2x2y2z2) and the
desired position of the Tarsus joint (xd2,TA, yd2,TA, zd2,TA)
into (5), we obtain two equations for the two unknown angles
q1 and q2:

q1 = arctan

(
a1(zd2 − LC)− xd2
yd2 − a2(zd2 − LC)

)
(6)

q2 = arctan (a1 cos(q1) + a2 sin(q1)) (7)

where

a1 =
(sin(δd) cos(βd)− b1 sin(βd)b2LTA
− cos(δd) cos(βd)LTA − LC

(8)

a2 =
(sin(βd + b1 sin(δd) cos(βd))b2LTA
− cos(δd) cos(βd)LTA − LC

(9)

and the desired position of the Tarsus joint is

xd2,TA = xd2 + (sin(δd) cos(βd)− b1 sin(βd)b2LTA

yd2,TA = yd2 + (sin(βd + b1 sin(δd) cos(βd))b2LTA

zd2,TA = zd2 − cos(δd) cos(βd)LTA

(10)

The parameters b1 and b2 change between front (b1 = 1,
b2 =

√
2/2), middle (b1 = 0, b2 = 1) and rear legs (b1 = −1,

b2 =
√

2/2) because the front and rear Coxa frames are
rotated by 45 ◦and -45 ◦respectively (Fig. 2).

What remains of the inverse kinematics is the positioning
of the last three joints within the plane. Fig. 5 shows the
remaining three joints and their geometrical dependencies.
First, the desired position of the foot tip (xd2, yd2, zd2) and
the desired position of the Tarsus joint (10) are transformed
from the frame (o2x2o2y2z2) to the frame (o4x4o4y4z4).
This is equivalent to the inverse of the homogeneous trans-
formation described by H2

4 (q1, q2). Due to these joints being
on a plane, the z coordinates are all considered to be zero
and will not be included in the following equations. The
desired position of the foot tip (xd4, yd4) and Tarsus joint
(xd4,TA, yd4,TA) relative to the Femur frame set the joint
angle q5 to

q5 = − arctan

(
xd4,TA − xd4
yd4,TA − yd4

)
− q3 − q4 (11)

The vector sum of the triangle between the Femur and
Tibia link gives

q4 = arctan(±
√

1−D2/D) (12)

where

D =
(xd4,TA)2 + (yd4,TA)2 − L2

F − L2
TI

2LFLTI
(13)

The two solutions of q4 correspond to “Tibia up” and
“Tibia down” configurations. The remaining joint angle q3
is derived by subtracting the angles in the triangle:

q3 = − arctan

(
xd4,TA
yd4,TA

)
− arctan

(
LTIs4

LF + LTIc4

)
(14)

The function atan2() is used to return the angle of the
appropriate quadrant and to avoid divisions by zero.

III. ROBOT CONTROL
The hierarchical control architecture of Weaver contains a

low-level and high-level part. Our main contributions stem
from the low-level controller and the inclination controller
which improves locomotion on rough terrain as well as
inclined terrain. Fig. 6 shows the control architecture of the
robot and Table II describes the signals. The commands from
the operator are translated into a desired body pose and body
velocity relative to the world frame (o0x0y0z0).

The hexapod moves by coordinating the movement of its
six legs. The “stance phase” and the “swing phase” describe
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TABLE II
SIGNAL DESCRIPTION OF THE HIERARCHICAL CONTROLLER.

Signals Symbols SI units

Pitch and roll angle [qpitch, qroll] rad
Foot positions [p1, p2, p3, p4, p5, p6] m

Desired body pose [∆o1, qpitch,d, qroll,d] m,rad
Delta foot trajectory [∆xr2,∆yr2,∆zr2] m

Foot trajectory [xr2, yr2, zr2] m
Des. foot trajectory [xd2, yd2, zd2] m

Des. motor positions [qd1, qd2, qd3, qd4, qd5] rad
PID signals [I1, I2, I3, I4, I5] A

Motor positions [q1, q2, q3, q4, q5] rad
Motor torques [M1,M2,M3,M4,M5] Nm

Force at the foot [Fx, Fy , Fz ] N

that the leg is in contact with the ground and that the leg
swings in a certain direction, respectively. A “stride” is
the combination of both movements and by repeating the
execution of strides the robot performs a gait. By performing
different sequences of stance and swing phases the robot
moves with different gait patterns. In this context, the duty
factor β is the ratio between the durations each leg spends in
stance phase TStance and stride phase TStride. The “wave”
and the “tripod” gait are typical gaits for hexapod robots.
The wave gait has one leg in swing phase and all other five
legs in stance phase (β = 5/6) and the tripod gait has three
legs in swing phase and three legs in stance phase (β = 3/6)
[18], [19].

The foot path planner generates a foot trajectory for each
leg. The swing phase is modelled by a Bézier curve. An
important parameter is the length of the stride S shown
in Fig. 2. While the stride frequency stays constant, body
velocity increases with increasing stride length.

A. Inclination Control

The inclination controller in Fig. 6 determines the ori-
entation of the gravity vector relative to the body frame
and increases the stability by shifting the center of mass
(CoM). The orientation of the gravity vector relative to the
Coxa frame (o2x2y2z2) can be defined using the two control
angles δd and βd in Fig. 4. In combination with the inverse
kinematics the inclination controller aligns the force ellipsoid
of the foot tip with the gravity vector. This increases energy
efficiency and maneuverability when traversing inclinations

Low-level controller

High-level controller

Body path planner

Foot path planner

Impedance 
controller

Motor positions 
and efforts

Joint 
input

Body trajectory

Foot trajectory

Gait pattern planner

Operator

Gait pattern

Inclination
controller

IMU

Motor 
positions 

Foot 
positions 

Pitch and 
roll angle 

δd and βd  

Desired 
body pose 

WeaverForward 
kinematics

Fig. 6. The hierarchical control architecture of Weaver.

because the gravitational force is supported with least amount
of effort [13]. Furthermore, the inclination controller sets
the body pose to increase the Normalized Energy Stability
Margin (NESM). The NESM is a stability criteria for walking
robots on rough terrain and it is defined as the difference
between the robot’s maximum and initial potential energy
normalized by weight [20]. A desired pitch angle qpitch,d
and roll angle qroll,d of the body, and the translation of the
body shifts the CoM to a stable body pose.

An inertial measurement unit (IMU) measures the pitch
qpitch and roll angle qroll of the robot, and the current
inclination angles of the ground relative to the body are
calculated by

[qinc,p, qinc,r] = [f(qpitch, Pi), f(qroll, Pi)] (15)

where the angles qinc,p and qinc,r denote the part of the
inclination gradient in pitch and roll direction of the body,
respectively. Pi is the set of the six foot tip positions. The
desired pitch qpitch,d and roll angle qroll,d of the body are
proportional to the current inclination.

[qpitch,d, qroll,d] = [kp,1 · qinc,p, kr,1 · qinc,r] (16)

in which the constant values kp,1 ∈ [0, 1] and kr,1 ∈ [0, 1]
reduce the desired body angles to keep the leg inside of its
workspace [21]. The translation of the body centre ∆o1 =
[∆x1,∆y1,∆z1)]T is

∆x1
∆y1
∆z1

 = Rotqrot,p,y2Rotqrot,r,x2

 0
0

zbody

−
 0

0
zbody

 (17)

where

[qrot,p, qrot,r] = [kp,2 · qinc,p, kr,2 · qinc,r] (18)

with kp,2 ∈ [0, 1] and kr,2 ∈ [0, 1]. Rotqrot,p,y2 and
Rotqrot,r,x2 define the rotation matrix around the y2 axis
and x2 axis, respectively. The value zbody is the body height
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Fig. 7. Block diagram describing the low-level controller for one leg with
five joints. In joint space, signals are treated as SISO for the five joints of
each leg. The task space contains the foot trajectory of one leg.



Fig. 8. Inclination controller in combination with the inverse kinematics:
Inclination in longitudinal (a), longitudinal and transverse (b), transverse
(c) direction with respect to the body frame’s x1 axis and with inclination
control off (d).

above ground. Finally, the output of the inclination controller
or respectively the input of the inverse kinematics is

[δd, βd] = [(1− kp,1) · qinc,p, (1− kr,1) · qinc,r] (19)

Fig. 8 shows the effect of the inclination controller in
combination with the inverse kinematics.

B. Low-Level Control

When traversing uneven terrain it is crucial to control
the contact between the foot tip and ground. With force
control it is possible to add virtual elastic elements to a
mechanically stiff configuration such that on uneven terrain,
the legs adapt to maintain ground contact. Impedance con-
trol is one approach of indirect force control and achieves
the desired dynamic behavior of the legs. A second order
mechanical system consists of a mass, damper and spring
[22]. The impedance controller design in Fig. 7 with the
description in Table II does not require inverse dynamics
with state feedback to linearize the mechanical system. The
only requirements are the inverse kinematics and the force
at the foot tip. This makes the controller versatile for any
legged robot with arbitrary joint configurations.

The impedance controller in Cartesian space transforms
the force at the foot tip into a resulting position. A virtual
mass mvirt, virtual stiffness cvirt and virtual damping ele-
ment bvirt define the dynamic behavior in the z2 direction.
The natural frequency ω2

0 = cvirt/mvirt and the damping
ratio D = bvirt/(2

√
mvirtcvirt) are useful parameters to

describe the second order system given by

− Fz
mvirt

= ¨∆zr2 + 2Dω0
˙∆zr2 + ω2

0∆zr2 (20)

The damping ratio D sets the behavior in terms of
undamped (D = 0), underdamped (D < 1), overdamped
(D > 1) and critically damped (D = 1).

The virtual second order mechanical system reacts on
ground reaction forces and adapts the desired foot trajectory.
The positions ∆xr2 and ∆yr2 are set to zero in order to

cvirt

x2

z2

o2

bvirt

mvirt

zr2zd2

∆zr2-Fz

Fig. 9. The equivalent model of the impedance controller is a second order
mechanical system attached to the foot tip.

keep the stiff behavior of the leg in x2 and y2 direction. The
adapted leg position becomes

[xd2, yd2, zd2]T = [xr2, yr2, zr2 −∆zr2]T (21)

The equivalent model of (20) and (21) is shown in Fig. 9.
Weaver’s mass causes pre-stressing of the virtual dynamic
elements in (20). Hence, the induced torques at each link
are canceled by the gravity compensation. The impedance
controller only uses the force in z2 direction and the force
|Ft| = (F 2

x +F 2
y )1/2 is used to detect obstacles. If the force

is greater than a tuned heuristic threshold, the stride height
of the foot tip increases.

The desired and current motor positions of the five joints
are processed by a PID controller. Each joint is controlled
as as single-input single-output system (SISO) and coupling
effects are treated as disturbances. The main objectives of
the independent joint controller are trajectory tracking and
disturbance rejection.

IV. EXPERIMENTS AND RESULTS

The following section shows the criteria that are used to
evaluate Weaver’s performance.

A. Performance Criteria

The dimensionless energetic cost of transport (CoT ) is
a popular performance indicator in the wheeled and legged
robotics communities used to compare performance of dif-
ferent robots [18], [23]. It is defined as

CoT = UI/(mgv) (22)

where U is the voltage of the power supply, I is the
instantaneous current drawn from the power supply, m is
the mass and v is the velocity of the robot. The estimated
power consumption P ≈ UI consists of the mechanical
power of the motors, heat dissipated by the robot and other
losses like friction. Thus, the overall power consumption P
highly depends on the motor characteristics but this is not
considered in this work.

Uneven terrain causes undesirable movement in pitch and
roll. The self-stabilizing effect of the impedance controller
minimizes the angular movements. The percentage reduction
of variance Si is a novel stability criteria for legged robot
and comes from ship control assessment [24]:



Si = 100 ·
(

1− V ar(Xi,imp)

V ar(Xi,u)

)
(23)

where i is a place holder for the movement in pitch and
roll. The function V ar() is the variance and the variable Xi

is the set of observed values in radian. The subscripts imp
and u stand for impedance and unstabilized, respectively.

Weaver adapts its legs on uneven terrain to maintain
ground contact. It is possible to estimate the center line av-
erage [25] of the roughness Ra by processing the difference
of the six foot tip positions in z direction using forward
kinematics.

B. Experimental Setup

In all experiments Weaver had no information about
its environment and no exteroceptive sensors were used.
A human operator controlled the robot via joystick (via
velocity commands) and the tripod gait was used. During
experimentation, the velocity v of the robot was tracked at
4 Hz using a robotic total station (Leica TS12) with a target
prism mounted on the robot. The power consumption P
was measured at 20 Hz by an Arduino based system sensor.
The torque from the servomotors of Weaver is an unknown
function of the servomotor’s current and it is modeled as a
linear function (Mi = kCIi). This estimation neglects large
friction losses and the constant calibration gains kC were
determined in a separate experiment with an ATI Mini45
Force/Torque sensor. A fourth order Runge-Kutta solver was
solving (20) and the parameters of the impedance controller
were cvirt = 1044 Nm−1, ω0 = 0.89 s−1 and D = 0.7. In
the inclination controller the parameters were set to kp,1 =
kr,1 = 0.35 and kp,2 = kr,2 = 0.75. Table III lists the
specifications of Weaver.

The following results compare the behavior of standard
position control with the above described impedance and
inclination controllers. The experiments are divided into
three parts. The first part is on flat terrain and the second
part is a plane with different inclination angles. The contact
surface of the inclination consists of a carpet surface and the
robot has rubber feet. The third part is on the multi-terrain
testbed in Fig. 10 which evaluates the performance of Weaver

TABLE III
SPECIFICATIONS OF WEAVER.

Type Description

General m = 7.03 kg; Body dimensions: LB = 0.35 m,
WA = 0.18 m, WB = 0.28 m; Leg dimensions:
LC = 0.0665 m, LCT = 0.062 m, LF = 0.1065 m,
LTI = 0.088 m, LTA = 0.135 m (See Figs. 2,3)

Servomotors Dynamixel MX-64 (Coxa, Tibia, Tarsus) with torque
calibration gain kC = 16.06 and Dynamixel MX-106
(Coxat, Femur) with torque calibration gain kC =
22.22 (38 Hz)

Power supply 2× 4-cell LiPo batteries (14.8 V, 4000 mAh each)

On-board PC Intel NUC mini PC (Intel Core i5 processor, 16 GB
RAM) running Robot Operation System (ROS) in an
Ubuntu environment

Sensors Microstrain GX3 IMU (100 Hz)

Fig. 10. Multi-terrain testbed with maximum height difference: 113 % (A),
28 % (B), 11 % (C) and 72 % (D) of Weaver’s body height.

on uneven terrain. Segment A of the testbed contains wooden
blocks of various heights and segment B-C-D is a mixture
of sand, pebbles, river stones, crumbled concrete and bigger
stones. Besides the uneven ground condition, the challenging
part of the testbed is the inclination gradient. The robot faces
inclination angles in different directions with respect to the
body’s x1 axis and thus, the inclination control needs to adapt
both control angles (δd and βd) of the inverse kinematics.

C. Results

The first experiment evaluates the performance on flat
terrain. The flat-terrain experiment was repeated three times
for each controller and the results are summarized in Table
IV. The impedance controller has a slightly higher CoT on
flat terrain. Investigations revealed that the virtual compli-
ance induces additional movement of the legs due to impact
forces.

The second experiment evaluates the performance on high
gradient slopes. Fig. 11 shows Weaver on different inclina-
tion angles and the results in Table V shows the CoT of both
controllers. The impedance and inclination controller has a
distinctly lower CoT compared to the position controller
without inclination control and it increases the maximum
inclination angle significantly. This result comes clearly from
the improved leg configuration of the inclination controller
using the proposed inverse kinematics. The percentage reduc-
tion of CoT on a 20◦ inclination is 85.1 %. Weaver walks up
inclinations up to 30 ◦and remains static stable until 50 ◦.
Without inclination control the robot walks up inclinations
up to 20 ◦and remains static stable until 30 ◦. The reasons for
failing are slipping at the foot tip and reaching the torque
limits of the actuators.

The multi-terrain testbed in Fig. 10 evaluates the perfor-
mance of Weaver on uneven terrain. Fig. 12 shows the mean
(black line) and standard deviation (grey shading) of the CoT
from 15 runs with the impedance and inclination controller.
Two runs are showing the CoT of the position controller
(blue and red line). The proprioceptive roughness estimate
Ra (green line) is based on 15 runs with the impedance
and inclination controller. It is calculated by processing the

TABLE IV
RESULTS OF THE FLAT-TERRAIN EXPERIMENT.

Controller Power in W Velocity in ms−1 CoT

Position control 124.2 ± 8.5 0.119 ± 0.0051 15.2 ± 1.25
Impedance control 132.4 ± 9.5 0.103 ± 0.0035 18.1 ± 1.61



Fig. 11. Inclination control test.

TABLE V
RESULTS OF THE INCLINATION EXPERIMENT (WALKING UP).

Inclination
angle

CoT of position
control only

CoT of impedance and
inclination control

10 ◦ 30.36 ± 3.74 25.0 ± 2.0
20 ◦ 301.9 ± 148.35 45.0 ± 8.77
30 ◦ not possible 156.5 ± 39.56

adapted foot tip positions and it estimates the changing ter-
rain characteristics. In segment A of the multi-terrain testbed,
it can be seen that the position controller’s CoT (blue line)
begins to increase towards infinity as its speed approaches
zero whereas using impedance and inclination control (black
line), the CoT only increases a finite amount. The impedance
and inclination controller reduces the CoT by an average
of 54.3 % in segment A. With position control (blue line)
the robot gets stuck due to the increasing roughness and
inclination of the terrain in segment A. After repositioning
Weaver with the position controller (red line) in segment
B of the multi-terrain testbed, Weaver gets stuck again in
segment D and some of the actuators reach their torque
limits. The impedance and inclination controller (black line)
enables Weaver to traverse this challenging terrain. Moving
stones cause a sudden change of the velocity in segment
D and for a few runs with the impedance and inclination
controller (black line) this causes a drop in velocity and
consequently, a high CoT. The robot copes with the changing
terrain conditions and continues the run. This also explains
the high standard deviation around the peaks. The experiment
was not repeated for Weaver with only position control since
it became apparent that the controller was not able to cope
with the terrain and a repetition could damage the robot.
The percentage reduction of variance (23) is calculated with
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Fig. 12. Results of the multi-terrain experiment show the CoT of the
position controller and the impedance controller. The adapted foot tip
positions of the impedance and inclination controller estimate the roughness
of the terrain by calculating the center line average. The black colored line
is the mean and the grey shading is one standard deviation of the impedance
and inclination controller.

one run of the position controller and all 15 runs of the
impedance and inclination controller. Sroll = 58.51 % and
Spitch = 63.66 % are the results of segment A and Sroll =
88.01 % and Spitch = 73.86 % are the results of segment
B-C-D. The phase planes of the pitch and roll movement
for two runs in Fig. 13 confirm the self-stabilizing effect of
the impedance controller. The angular body movements of
the position controller (red line) are reaching unstable limit
cycles. The impedance and inclination controller (blue line)
reduces this effect and the limit cycles stay closer around
zero angle and zero angular velocity.

V. DISCUSSION
The experimental results successfully demonstrated the

ability of Weaver to overcome challenging terrain without
prior profiling of the terrain with exteroceptive sensors and
complex planning algorithms. The results of the multi-terrain
testbed reveals that the impedance controller enables the
robot to adapt to uneven terrain. This effectively decreases
the CoT and distinctly increases the stability of the robot by
reducing the body movement. A spin-off of the impedance
controller is the possibility to estimate the roughness of the
terrain due to the different foot placements. The roughness
estimation is not strictly required to perform locomotion.
However, it evaluates the performance of the controller and it
also confirms the adaptive approach of the foot tip position
due to uneven terrain. In addition, the versatile controller
design accommodates different leg configurations without
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the need for inverse dynamics. The result on flat terrain
also shows the limitations of the controller in its current
implementation. The same elastic configuration of the legs
used on the multi-terrain testbed slightly increases the CoT
on flat terrain. This indicates a high stiffness setting is
desirable for flat hard terrain while a low stiffness is desirable
for uneven or soft terrain. The inclination controller in com-
bination with the inverse kinematics improves the locomotion
of Weaver on slopes and extends the field of applications
to terrains with higher slopes. By comparison: LAURON
V walks up inclinations up to 25 ◦and remains stable until
42.8 ◦ [21]. The results show that Weaver is increasing the
maximum angle for the dynamic and static case to 30 ◦and
50 ◦. A comparison between LAURON V and Weaver is only
conditionally possible because the highest inclination angle
depends on the friction of the contact surface. The multi-
terrain testbed also verifies the integration of the impedance
and inclination controller into the hierarchical controller.
Weaver copes with high inclination gradients in any direction
with respect to the body and uneven terrain.

VI. CONCLUSIONS

This work introduced Weaver, the 30 DoF hexapod and
proposed a hierarchical controller that extends the field of
application of the robot. The reactive impedance and incli-
nation controller adapt the legs’ position and orientation to
improve locomotion based on proprioceptive sensing. Weaver
traverses challenging terrain and high gradient slopes in any
direction relative to the body frame. The paper focused on
reactive locomotion without implementing complex planning
algorithms based on exteroceptive sensing. The proposed
controllers were evaluated on a real robot and the results
were presented showing its effectiveness. The results from
the flat terrain experiment show the utility of using adaptive
parameters instead of constant parameters in the impedance
controller. In future work, parameter adaptation with respect
to the roughness of the ground will be investigated to
improve locomotion of varying terrain. It is possible to use
information from the roughness estimation of the foot tip
positions to adapt these parameters. In conclusion, this work
demonstrated that the robot’s low-level autonomy enables it
to explore rough terrain environments.
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Eds. Springer, 2014, vol. 267, pp. 343–352.

[12] D. Goldschmidt, F. Hesse, F. Worgotter, and P. Manoonpong, “Bio-
logically inspired reactive climbing behavior of hexapod robots,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2012, pp. 4632–4637.
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