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Walking Posture Adaptation for Legged Robot
Navigation in Confined Spaces
Russell Buchanan1, Tirthankar Bandyopadhyay2, Marko Bjelonic3,

Lorenz Wellhausen3, Marco Hutter3, and Navinda Kottege2

Abstract—Legged robots have the ability to adapt their walking
posture to navigate confined spaces due to their high degrees
of freedom. However, this has not been exploited in most
common multilegged platforms. This paper presents a deformable
bounding box abstraction of the robot model, with accompanying
mapping and planning strategies, that enable a legged robot
to autonomously change its body shape to navigate confined
spaces. The mapping is achieved using robot-centric multi-
elevation maps generated with distance sensors carried by the
robot. The path planning is based on the trajectory optimisation
algorithm CHOMP which creates smooth trajectories while
avoiding obstacles. The proposed method has been tested in
simulation and implemented on the hexapod robot Weaver,
which is 33 cm tall and 82 cm wide when walking normally.
We demonstrate navigating under 25 cm overhanging obstacles,
through 70 cm wide gaps and over 22 cm high obstacles in both
artificial testing spaces and realistic environments, including a
subterranean mining tunnel.

Index Terms—Legged Robots, Motion Control

I. INTRODUCTION

MULTILEGGED robots are well suited for complex,
rough and unstructured terrain. Their many degrees

of freedom (DOF) enable navigation of challenging environ-
ments including confined spaces. Hexapod robots such as
Weaver [1] and Lauron V [2] are very stable statically and
capable of walking on rough terrain and up steep inclines.
MAX [3], an Ultralight Legged Robot (ULR) was designed
to maximise locomotion efficiency in challenging outdoor
environments. More agile and efficient, quadrupedal robots
such as HyQ2Max [4], ANYmal [5], Minitaur [6] are capable
of running and jumping.

Several robots have shown the ability to change their posture
while walking in confined spaces such as SpotMini from
Boston Dynamics (see video [7]), ANYmal (see video at
24 s [8]) and the magnetic foot climbing robot Magneto [9];
however, to the best of our knowledge, none of these posture
adaptations are automatically planned.
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Fig. 1. The hexapod robot Weaver adapting its walking posture to pass under
an overhanging obstacle with 25 cm clearance.

To autonomously navigate difficult environments, legged
robots require mapping and planning techniques together with
appropriate control. Weaver, for example, uses proprioceptive
terrain characterisation and an admittance controller [10] for
uneven terrain. ANYmal uses robot-centric elevation mapping
to select individual footholds that are both on suitable terrain
and satisfy kinematic constraints [11]. However, neither of
these methods adapt the robot’s posture for walking through
confined environments.

Despite the capability of legged robots to change their
walking posture, there exist no solutions to achieve this
autonomously. To address this lack of perception and planning
methods, we present a solution that enables autonomous
navigation of confined spaces by multilegged robots.

A. Related Work

There has been significant progress in navigation of rough
terrain for multilegged robots. Terrain characterisation for gait
adaptation has been shown to improve locomotion efficiency
when walking on rough terrain [10]. Elevation maps have
been used with characterisation to plan footholds for optimal
stability and obstacle avoidance [12], as well as walking over
gaps and climbing stairs [11]. Optimising robot dynamics can
enable even more dynamic motions [13]; however, none of
these methods consider collisions with the body of the robot,
which is necessary in confined spaces.

For complex 3D environments such as large steps, trusses
or vehicle egress, full body contact planners using random
sampling such as probabilistic roadmaps (PRM) are used [14]–
[16]. This can be done by randomly sampling a subspace
of all possible contacts limited by stability and reachability
as in Tonneau et al. [15]. However, this method requires
accurate knowledge of the environment in advance. Short and
Bandyopadhyay [16] deal with this by first pre-computing
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a set of possible configurations based on the robot model
assuming no obstacles then selecting the best configurations
for a given, dynamic environment. The computational cost of
these planners are highly dependant on the complexity of the
terrain and the number of joints of the robot. This makes them
difficult to apply to high DOF, multilegged robots.

A common strategy is to simplify the problem by using a
lower dimensional abstraction of the robot model and planning
for this instead. Grey et al. [17] use bounding boxes attached
to the robot body to limit the search space of possible
configurations. In confined spaces, the bounding boxes are
too large and the planner must fall back to using the robot’s
minimal geometry. Orthney et al. [18] deal with confined
spaces by using nested robots to find paths for progressively
less abstract models.

B. Contributions

We take inspiration from soft robotics and propose a de-
formable bounding box abstraction of the robot model. The
concept is similar to [17], however, our bounding box can
change in volume, allowing it to continue to be effective in
confined spaces. Unlike [18], as our abstraction changes, the
complexity of the planning problem remains the same which
allows for fast computation in confined spaces. We do not plan
the foot tip locations, however our method could later be used
with a leg swing planner such as in [11] to avoid any collision
of the robot’s legs with the terrain.

Paths for deformable robots can be planned with sam-
pling methods such as PRM [19]. Yoshida et al. [20] use
a modified covariant trajectory optimisation method based
on CHOMP [21] to plan trajectories for an elastic O-ring.
These approaches work with soft, deformable objects and
use methods such as Free-Form Deformation (FFD) or Finite
Element Method (FEM) to calculate how the robot’s body
should deform under pressure from the environment. As a
result, these methods cannot be directly applied to rigid multi-
joint robots.

We plan body posture trajectories for the proposed de-
formable bounding box abstraction of a multilegged robot.
Collision checking is done in a signed distance field (SDF)
which is generated from a robot-centric multi-elevation map.
For the planner, we employ CHOMP [21] although any planner
could be used. The contributions from this work can be listed
as follows:
• Introduction of a deformable bounding box abstraction of

the robot model.
• Present a planning framework for the deformations and

demonstrate how trajectory optimisation is applied.
• Demonstration of posture adaptation on a real robot in

various real scenarios.
• Extension of robot-centric elevation mapping to full 3D

space mapping.

II. DEFORMABLE ABSTRACTION

Applying whole body contact planners to multilegged robots
poses significant computational costs due to the high number
of DOF. To plan robot body trajectories efficiently in 3D, we
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Fig. 2. Illustration of a legged robot with bounding box, coordinate frames
and elevation clustering. M , B and S origins indicate the map, body and
sensor frames respectively. On the right of the figure is an obstacle observed
by the sensor. The measurements are clustered into floor and ceiling elevations
which are modelled as Gaussian distributions.

simplify this problem by introducing a deformable bounding
box which encases the robot’s body as shown in Fig. 2.
The box does not extend downwards to include the legs but
does widen based on the robot’s width. This simplification
drastically speeds up collision checking but does not consider
leg collisions.

A. Bounding Box Definition

The bounding box has a fixed length and height but a
variable width and is attached to the body frame B. We define
span s as half the width of the bounding box so that the box
dimensions are [l0, 2 · s, h0]. The width extends to cover the
widest points of the robot including extra width to account for
the lateral component of leg swing.

For collision checking j points are defined around the
bounding box. The locations of these points can be selected
depending on the application or platform, Fig. 3 shows the
bounding box with a few points visualised. In our case, we
define lines of points along each edge of the box. The number
of points depends their radius which, at 5cm on Weaver, results
in 84 points.

B. Trajectory Definition

We plan trajectories in 3D space from a start configuration
ξ(0) to a specified goal configuration with a series of config-
uration steps in time ξ(t) given by

ξ(t) = [x(t), y(t), z(t), φ(t), s(t)], (1)
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Fig. 3. Deformable bounding box with some collision check points shown.
The body frame is located at the centre of the bottom face. The red point has
position tBBCj

= [ 1
2
· l0, −1 · s(z), h0]T .
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Fig. 4. Overview of the system implemented on the robot.

where x, y and z are the position and φ the yaw of the robot
base in the map frame M . We do not consider pitch and
roll in this work. However, they could be included as well
for more complex trajectories in future work. The trajectory
also includes s to deform the width of the bounding box as
a function of time. From this point, we drop t for notational
simplicity.

The collision check points in our bounding box model can
now be related to this trajectory definition with the vector

tBBCj = [cx · l0, cy · s(z), cz · h0]T . (2)

The subscript BCj indicates that the vector t is a translation
from the B frame to collision point j and the superscript
B indicates that the vector is defined in the B frame. Each
element in tBCj is multiplied by a coefficient cx,y,z ∈ [−1, 1]
which uniquely describes the collision point j within the
bounding box. For example a collision point located at the
front, right and top vertex of the bounding box in Fig 3 would
have coefficients cx = 1, cy = −1, cz = 1.

Equation (2) is expressed in frame B and can be transformed
to the map frame as:

tMMCj (ξ) = tMMB(x, y, z(s)) + RM
BM (φ)tBCj (s(z)), (3)

with the known translation tMMB(x, y, z) and yaw rotation of
the robot RM

BM (φ). In (2), s is a function of z because we
expect the width of the bounding box to deform as the robot
raises or lowers its body. The converse is also a part of our
model and we write z(s) in (3).

The position Jacobian of the collision check point JCj =
∂
∂ξ tMCj (ξ) ∈ R3×5 is given by

JCj =
[
I3×2, R ∂

∂z tBCj , R′tBCj , R ∂
∂stBCj

]
, (4)

with the following notation simplifications R = RBM (φ) and
R′ = ∂

∂φRBM (φ).
The translation derivatives ∂

∂z tBCj and ∂
∂stBCj relate how

the span s changes with z as well as the converse. Unlike
soft robots which have specific material properties, we can
define this deformation relationship ourselves. For this work,
we have chosen to model the relationship between s and z
as linear, scaled between specified maximum and minimum
limits for the robot’s posture. However, one could use a more
sophisticated model. Our choice has the benefit of being

very simple but can potentially fail in some very narrow
spaces, therefore our method is more conservative than other
abstraction approaches.

III. NAVIGATION IN CONFINED SPACES

Here we explain how to use our deformable abstraction to
navigate through confined spaces. Figure 4 shows an overview
of the full implementation. We use an RGB-D depth sensor
for both odometry and mapping of the local environment. 3D
SDFs are generated to represent obstacles around the robot.
We then plan optimised trajectories from the robot’s current
state to the requested waypoint. These trajectories are passed
to a controller interface which follows the trajectory sending
velocity and span commands to the robot controller.

A. Local Mapping

For fast 3D local mapping, there has been significant work
recently for micro aerial vehicles (MAVs). Oleynikova et
al. [22] presented Voxblox which uses voxel hashing to very
quickly build SDFs from distance measurements. Usenko et
al. [23] employ a robot-centric approach based on a 3D ring
buffer to maintain an occupancy map around the robot. Both
of these methods sacrifice accuracy for real-time performance
and are typically used with 10 cm or greater resolutions. This
makes them less suitable for ground robots which operate very
close to terrain and obstacles.

Elevation mapping has been successfully used for legged
robots by storing detailed height information about the terrain
[24]. To account for walls, elevation maps typically try to
find the highest point of the terrain and therefore often map
overhanging objects as part of the ground, hiding potential
paths. Pfaff et al. [25] introduced one of the first multi-
elevation maps which searched for overhanging obstacles to
remove. This ensured the ground mapping was not affected by
potential overhanging obstacles, however, it did not map the
ceiling itself and it assumed the robot had a fixed height.

An additional concern for autonomous robots is the drift in
odometry over time. Fankhauser et al. [26] introduced robot-
centric elevation mapping to address this issue by storing
data from the robot’s perspective and incorporating uncertainty
from the robot’s motion. The map is represented as a local
2D grid which moves with the robot, mapping new areas and
discarding old, unreliable data, as the robot moves.

B. Multi-Elevation Mapping

We extend the elevation mapping from [26] to map the
ceiling points above the robot as well as the floor points below.
We do this using the Grid Map data structure [27] which allows
multiple layers of 2D data to be stored in a grid centred on
the robot as it moves. For each depth camera scan, the mean
and variance [ĥ, σ̂2

h] of the height measurement is updated in
each cell by means of the following Kalman filter:

ĥ+ =
σ2
pĥ

−+σ̂2−
h p̃

σ2
p+σ̂

2−
h

, σ̂2+
h =

ˆ
σ2−
h σ2

p

σ2
p+σ̂

2−
h

, (5)

where − and + superscripts indicate the filter states before
and after a measurement respectively. The subscript p indicates
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the unfiltered sensor measurement variance which comes from
empirical models such as [28]. Before this fusion step, points
are clustered into floor and ceiling elevations with means
and variances [ĥf , σ̂

2
f ] and [ĥc, σ̂

2
c ]. In Fig. 2, on the right of

the robot, these two elevation estimates are shown as Gaussian
distributions.

Clustering is done by calculating the probability P of a
new point observation ĥ belonging to an elevation E which in
our case is either a floor or ceiling elevation. Each of these
elevations is modelled as N (µE , σE) so that the probability
likelihood function is given by

P (ĥp|E) =
1√

2πσ2
E

e
− (ĥp−µE)2

2σ2
E . (6)

In the case where there exists only one, or possibly no
elevations, we use an elevation probability prior P (E) which is
based on the assumption that the floor will be below the robot’s
body and the ceiling above. This prior is a parameter which can
be adjusted depending on how likely all floor measurements
are to be below the robot or ceiling measurements above eg.
a very low overhanging obstacle.

We then evaluate the posterior probability

ÊMAP (ĥp) = arg max
E

P (ĥp|E)P (E) (7)

for each elevation and classify the point observation based on
the maximum a posteriori. When there is only one elevation
we use the height of the robot body as a reference to check if
the measurement belongs to a new elevation. Once the point
has been classified it can be fused into the corresponding
elevation Kalman filter in (5).

Since clustering depends on the height of the robot’s base, if
an obstacle is below the robot, it becomes part of the floor and
the robot can walk over it. If it is above the robot, it becomes
part of the ceiling.

C. Deformation Planning

With the framework formalised in Section II-B, it would
be possible to apply sampling methods as in [17] and [18]

Fig. 5. Hexapod robot Weaver in the test tunnel where the ceiling has been
lowered to create and overhanging obstacle (bottom). A visual representation
of the multi-elevation map with floor (red) and ceiling (blue) layers (top). The
white points are the raw sensor measurements from the Intel Realsense D435
depth camera.

by searching through the space of possible deformations.
However, since our abstraction deformations are continuous
and have well defined transitions via the Jacobians, we can
also use trajectory optimisation methods. CHOMP is well
suited to this problem as it is designed to be invariant to re-
parameterisation and produces smooth trajectories.

Our trajectory optimisation uses the functional gradient
descent update rule given by

ξi+1 = ξi −
1

η
A−1∇̄U [ξi], (8)

where the norm A is formed by multiplication of differencing
matrices and acts as a smoothing operator on trajectories. The
learning rate η regulates the speed of convergence to a solution
for each iteration i. ∇̄U is a functional gradient that operates
on the trajectory configuration function ξ(t) defined in (1).
This functional gradient is the sum of two gradients ∇̄Fsmooth
and ∇̄Fobstacle. ∇̄Fsmooth is a cost on non-smooth trajectories
calculated by

∇̄Fsmooth[ξ](t) = − d2

dt2
ξ(t). (9)

Higher orders of derivative could be used as discussed in
[21], however, we only use the 2nd order time derivative. The
obstacle avoidance gradient ∇̄Fobstacle is calculated for each
collision check point given by the sum

∇̄Fobstacle[ξ] =

C∑
j=1

JTCj‖X
′‖[(I− X̂′X̂′

T
)∇c− cκ], (10)

where JCj
is the position Jacobian for the collision check

point as calculated in (4). X′ and X′′ are the velocity
and acceleration for each collision point and X̂ denotes a
normalised vector. Kappa κ = ‖X′‖−2(I − X̂′X̂′

T
)X′′ is

the curvature vector along the trajectory workspace. The
matrix ‖X′‖[(I− X̂′X̂′

T
) projects gradients orthogonally to

the direction of motion to avoid affecting the speed profile.
The variable c represents the cost associated with a point in
the trajectory being near an obstacle and comes from the SDF.
The cost function used in this work is the same continuous
piecewise function as proposed in [21].

IV. EXPERIMENTS

In this section, we explain how we demonstrate the func-
tionality of posture adaptation. We also show that our method
can solve similar problems as full joint space planners with
significantly better computational performance.

A. Experiment Tasks

We present three basic tasks: thin gap, low overhang and
high clearance which aim to show capability of our planning
algorithm. Figure 6 shows both the simulated robot and the
real robot navigating each of these spaces. In the thin gap task
the robot must narrow its span to reduce its width which, from
our linear implementation of ∂

∂stBCj , also results in a raised
body. For low overhang the robot must reduce its height which
leads to a corresponding increase in width. High clearance
functions similarly in that the robot must raise its body so that
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Fig. 6. Three basic tasks attempted in simulation and on the real robot. From
left to right: thin gap, low overhang and high clearance.

the bounding box around the body passes over the obstacle.
Since we do not plan the leg trajectories we set up this task
so that the obstacle can always pass between the robot’s legs.

B. Simulations

The full navigation system in Fig 4 was implemented in
a simulated environment. A hexapod robot, the environment
and depth sensor measurements were all simulated. For each
task, we experimented with progressively narrower spaces.
To evaluate the amount of posture adaptation, we show a
normalised percentage of displacement between a nominal
value with which the robot normally walks and an empirically
determined limit. For example, for the low overhang task,
the simulated robot has a nominal height of 32.7 cm and a
minimum height of 14.1 cm if the bottom of the body rests on
the terrain. The total possible change in posture to pass under
an obstacle is therefore 18.6 cm. Thus lowering the body below
30 cm corresponds to a displacement of 2.7 cm or about 14.5%
of the total possible change in posture for this task. Using this
posture adaptation percentage makes it possible to compare
difficulties of tasks for different robot platforms.

C. Performance Evaluation

In the following we show that the presented planning
framework is capable of navigating the same kinds of spaces
as a whole body joint space planner, such as Contact Dynamic
Roadmaps (CDRM) [16]. Moreover, we show that our frame-
work greatly reduces the computation time. To demonstrate
this benefit, we repeat their clearance task and compare the
performance with our framework.

For this task, a 15 cm high block is progressively raised and
the robot must walk forward to a waypoint 3 m away. As the
block is raised higher the robot first walks over the block then
under. We tested with two robot models in simulation: the
hexapod used in previous simulations and a quadruped robot
model nearly identical to the one used in [16].

Slots

4.7m

0.85m

3.0m

0.
7m

2.35m 1.5m

Fig. 7. Test tunnel with slots for adjusting ceiling height.

We measure the time taken to create the 6 × 6 × 1 m
SDF from a given multi-elevation map and to then compute
the desired trajectory. This already places our method at
a disadvantage compared to CDRM which is given exact
knowledge of the environment for their online planning step.
In the original CDRM experiment, they used a quad-core
i7 4700M CPU and 16 GB of RAM; we could not find an
exactly identical machine so for comparison we used a dual-
core i7 5600U with 8 GB of RAM which is a newer but
significantly lower power machine. For an additional, more
realistic comparison, we also recorded timing on the real
robot’s computer: an Intel NUC with a dual-core i7-5557U
and 16 GB of RAM.

D. Testing Tunnel

In addition to simulations we implemented the full pipeline
from Fig. 4 on the hexapod robot Weaver [1]. Weaver is a six-
legged robot with 5 degrees of freedom for each leg and is
capable of climbing 30◦ inclines. Designed for proprioceptive
sensing and adaptive based control, it is an ideal platform for
demonstrating the capabilities of posture adaptation in realistic
situations. For distance sensor, we use an Intel Realsense
D435 to generate both the pointclouds and the RGB-D images
used for odometry which is done with a modified version of
ORB SLAM2 [29].

Weaver uses a hierarchical whole body controller detailed
in [1]. When a deformation trajectory is generated, we pass
the desired body pose for each step to the controller. We can
also specify a maximum width of the robot and the controller
computes desired footholds for the next step based on the
specified gait.

We constructed an above-ground testing tunnel with ad-
justable ceiling that can be lowered to create overhanging
obstacles (Fig. 7). Wooden blocks are used to create thin
gaps and high clearance tasks inside the tunnel. Weaver
accomplished each of these tasks inside the tunnel as shown
in the bottom row of Fig. 6.

E. Field Experiments

Weaver was also brought to the University of Queensland
Experimental Mine (UQEM), a now-defunct silver and lead
mine, to conduct field trials. The mine is administered by
the University of Queensland’s School of Mechanical and
Mining Engineering. We brought the robot to a section of

Fig. 8. Weaver in a UQEM tunnel.
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(a) High clearance task: Raise body above obstacles.
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(b) Low overhang task: Crawl under an overhanging obstacle.
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Fig. 9. Simulation results of the robot completing three tasks with progres-
sively tightening constraints. Each plot is annotated with the constraint and
the corresponding posture adaptation percentage.

the mine where there are wooden supports on either side of
the hallway with large concrete bases which make the hallway
too narrow to normally navigate. Additionally, there is a large
pipe running along one side of the hallway making the path
even more narrow which can be seen in Fig. 8.

V. RESULTS AND DISCUSSION

Here we present our results and provide a discussion of the
capabilities and limitations of our method.

A. Simulations

We found the robot was able to adapt its walking posture
significantly and still navigate all of the tasks. Fig. 9 shows
the simulated robot position as it traverses the same task
with increasing difficulty. For all tasks the robot was able to
plan posture changes of over 60% and then carry them out,
walking through the narrow space. Table I shows the maximum
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Fig. 10. Success rates of increasingly narrow/high spaces over 10 trials with
5 cm collision radius (Insets: robot performing the tasks in simulation).

TABLE I
MINIMUM CONFINED SPACES WITH COLLISION-FREE NAVIGATION (WITH

CORRESPONDING POSTURE ADAPTATION PERCENTAGE).

High Clearance Low Overhang Thin Gap

Simulation 26 cm (65%) 22.5 cm (54.7%) 70 cm (37.1%)
Real robot 22 cm (65.1%) 25 cm (53.0%) 70 cm (37.1%)

posture adaptations that were capable without colliding with
the environment. As shown in Fig. 9, the robot was able to
continue even further after a collision, passing through even
more confined spaces.

In the high clearance task, the robot walked over a 28 cm
high obstacle but the body collided with it. Since 30 cm is the
height limit for the simulated robot it was unable to plan any
higher. This limitation can be seen in the Fig. 9 at 26 cm and
28 cm where the robot is forced to plan a trajectory with an
obstacle in the green clearance area since it is prevented from
raising its body any higher.

For the low overhang task, after 25 cm the planner is
also forced to generate trajectories with obstacles inside the
clearance region. This is because the 5 cm clearance effectively
increases the total height h0 of the robot body to be greater
than 25 cm making obstacle free trajectories are impossible.
When this occurs CHOMP attempts to find the lowest obstacle
cost trajectory by solving trajectories where the obstacles end
up inside gaps between the collision check points. This can
be mitigated by weighting ∇̄Fsmooth higher than ∇̄Fobstacle
but that could result in more collisions overall.

The most challenging task is the thin gap because our
abstraction does not model the additional width from the robot
taking a step. We account for this by adding a fixed span-offset
to the robot. However, this has the drawback of artificially
increasing the model’s width which limits the amount of
deformation for which the robot can plan.

Reducing span also reduces the robot’s support polygon,
reducing stability which often results in collisions. We use
a simple proportional controller to guide the robot along the
generated trajectory so a more sophisticated control system
might be able to account for this. High clearance also has this
instability effect however can achieve a higher percent posture
adaptation simply because there is less potential for adaptation

CDRM (i7 4700M CPU/ 16GB RAM)

Quaruped (i7 5600U CPU/ 8GB RAM)

Hexapod (i7 5557U CPU/ 16GB RAM)

Hexapod (i7 5600U CPU/ 8GB RAM)

Quaruped (i7 5557U CPU/ 16GB RAM)
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Fig. 11. Comparison of CDRM planning time vs posture adaptation for the
clearance task on a log scale. Values for CDRM come from [16].
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Fig. 12. Posture for each task on the real robot.

compared to span: the simulated robot model can only raise
its body 11.3 cm but can potentially reduce its span as much
as 15.9 cm.

We additionally examine the rate of failure of the planner
and observe that the failure rate depends on the confinement
of the environment. Fig. 10 shows the results of 10 simulated
trials for each task and each difficulty. In general, the robot
is able to plan trajectories with 100% success up to a certain
confinement then, because of our conservative abstraction, the
planner quickly fails.

B. Performance Evaluation

The framework is able to navigate the exact same envi-
ronment and using a similar robot as CDRM. On the NUC
(i7 5557U CPU / 16GB RAM), there is an improvement
in performance of 1-2 orders of magnitude as shown in
Fig. 11 and all posture adaptation paths were planned in under
0.5 s. This is possible because the deformable bounding box
massively reduces the dimensionality of the problem from 18
(quadruped) and 36 (hexapod) to just 5. However, our method
does not plan individual leg placement which prevents us from
navigating other CDRM tasks. In Fig. 11 there is a peak for all
planning times where the planner must choose between going
above or below the obstacle. In our experiments, this peak is
slightly shifted which could be accounted for by differences
in the robot models we used.

C. Testing Tunnel

In Fig. 12 we plot the position and width data recorded
by the robot as it traversed the narrow spaces. Weaver was
able to walk over a 22 cm high obstacle, pass under a
25 cm overhanging obstacle and reduce its width to 70 cm
without colliding with the environment. Table I shows the
corresponding percent posture adaptations. Note that the real
robot is slightly different from the simulated model and stands

Fig. 13. Results from completing the full obstacle course. Position infor-
mation comes from the onboard odometry. The cyan rectangle indicates the
area where there is a low overhanging obstacle. The red points indicate the
waypoints sent to the path planner.

over 33 cm tall with a nominal clearance of 16.5 cm which
slightly changes the correspondence between confined space
and posture adaptation percentage.

In addition to these tasks, we set up a complete obstacle
course in which the robot must walk over 7.5 m through the
confined tunnel completing each of the tasks in sequence.
Fig. 13 shows the path taken by the robot including the span
as it traversed the course.

In performing these experiments we experienced the same
difficulties controlling the robot during the thin gap task as
seen in the simulations. Changing the walking gait from the
usual tripod gait to a ripple gait helps with the instability.
When attempting the complete obstacle course we experienced
issues with obstacles being within the minimum specified
range of the Intel Realsense. This led to ghost measurements
above the robot which made the ceiling map very noisy.

D. Field Experiments

Fig. 14 shows a top-down view of the path and posture
of the robot walking to a waypoint 3 m away. Despite the
space becoming as narrow as 65 cm, which corresponds to a
posture deformation of 52.83%, the robot was able to reach
the requested goal.

VI. CONCLUSION

The objective of this work was to create a fast and reliable
planner which allows legged robots to navigate confined
spaces. This was achieved by using a deformable bounding
box as an abstraction of the robot model. Moreover, this
abstraction greatly simplified planning complexity in open

Robot body limit 5cm clearance limit
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to fit through the environment. Fig. 8 shows the the robot in this environment.
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and confined spaces enabling us to solve challenging navi-
gation problems efficiently. We additionally presented multi-
elevation mapping of the local environment which was used
to create SDFs of the space around the robot. While we
deployed CHOMP to solve the deformation trajectories, any
other planner could be used as our abstraction does not lose
generality. We navigated confined spaces in simulation and on
a real robot, showing feasibility. Finally, we performed field
experiments in a real mine tunnel to fully demonstrate the
usefulness and robustness of our proposed posture adaptation
method.

VII. FUTURE WORK

Our planning framework is generic and light-weight enough
that it can be combined with other, more sophisticated plan-
ners. One major goal for the future is to incorporate a leg
swing planner such as in [11] to completely avoid collision
of the robot with the terrain. In that work they assume a
constant body height and pre-generate footsteps based on an
ideal gait pattern before optimising for terrain. It would be
possible to instead use our body pose and width for the initial
footstep generation. While this work can be directly applied to
other robots, additional testing should be done with different
abstractions and deformation models to find which solutions
are best for different robot morphologies.
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