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Abstract— Our paper proposes a model predictive controller
as a single-task formulation that simultaneously optimizes wheel
and torso motions. This online joint velocity and ground
reaction force optimization integrates a kinodynamic model
of a wheeled quadrupedal robot. It defines the single rigid
body dynamics along with the robot’s kinematics while treating
the wheels as moving ground contacts. With this approach,
we can accurately capture the robot’s rolling constraint and
dynamics, enabling automatic discovery of hybrid maneuvers
without needless motion heuristics. The formulation’s generality
through the simultaneous optimization over the robot’s whole-
body variables allows for a single set of parameters and
makes online gait sequence adaptation possible. Aperiodic
gait sequences are automatically found through kinematic leg
utilities without the need for predefined contact and lift-off
timings, reducing the cost of transport by up to 85 %. Our
experiments demonstrate dynamic motions on a quadrupedal
robot with non-steerable wheels in challenging indoor and
outdoor environments. The paper’s findings contribute to eval-
uating a decomposed, i.e., sequential optimization of wheel and
torso motion, and single-task motion planner with a novel
quantity, the prediction error, which describes how well a
receding horizon planner can predict the robot’s future state.
To this end, we report an improvement of up to 71 % using our
proposed single-task approach, making fast locomotion feasible
and revealing wheeled-legged robots’ full potential.

I. INTRODUCTION

Quadrupedal robots are fast becoming more common in

industrial facilities [1], and it is only a matter of time

until we see more of these robots in our daily lives. Their

locomotion capabilities are well understood, and there are

many different approaches published that exploit knowledge

about their natural counterparts [2], [3]. The understanding

of locomotion principles has led to simplified models and

heuristics that are widely used as templates to control legged

robots [4]–[10]. While legged robots have already made their

way into real-world applications, wheeled-legged robots are

still (mostly) only within the research community [11]–[16].

Their locomotion capabilities are less understood due to

missing studies of natural counterparts and the additional

degrees of freedom (DOF) of the wheels, making simplified

models that capture dynamic hybrid locomotion, i.e., simul-

taneous walking and driving, cumbersome to design.

Hybrid locomotion for robots, such as depicted in Fig. 1,

faces two specific problems, one requires continuous, and the
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Fig. 1. With our novel whole-body MPC, the robot ANYmal [17], equipped
with actuated wheels, explores indoor and outdoor environments in a fast
and versatile way (video available at https://youtu.be/_rPvKlvyw2w). First
row: Locomotion in high grass and over steep hills of up to 2 m/s, while
gait sequences are automatically discovered. Second row: Blindly stepping
over a 0.20 m high step (32 % of leg length) and stairs with a 0.175 m high
step (28 % of leg length). Third row: Pacing gait and 0.28 m high jump with
front legs.

other discrete decision-making. The latter relates to the task

of finding the appropriate gait sequencing, i.e., sequences of

lift-off and touch-down timings, which becomes difficult to

handcraft. Besides, the work in [18] reveals that the proper

choice of gait sequences for wheeled-legged robots is crucial

to reducing the cost of transport (COT). The former problem

describes the task of finding the continuous motion of the

robot, i.e., the trajectories of the torso and wheels. Our

whole-body1 MPC requires minimal assumptions about the

robot’s dynamics and kinematics, allowing wheeled-legged

robots to accurately capture the rolling constraint without

adding unnecessary assumptions.

1In this paper, the MPC’s whole-body model includes the whole-body
kinematics and single rigid body dynamics, simultaneously optimizing the
robot’s contact forces, generalized coordinates and velocities, including the
6D torso motion and joint kinematics.

https://youtu.be/_rPvKlvyw2w


A. Related Work

In the following sections, we categorize existing ap-

proaches to legged locomotion and bring them into the

context of hybrid locomotion.

1) Continuous Decision-Making: A decomposed-task ap-

proach splits the problem into separate foot (or wheel)

and torso tasks. By breaking down locomotion planning for

high-dimensional (wheeled-)legged robots into two lower-

dimensional sub-tasks, we hypothesize that the individual

problems become more tractable. The coordination of each

task’s solution is one of the main challenges, and heuristics

are needed to align the foot and torso motions. Many

approaches were developed over the last years exploiting

these task synergies [5], [6], [8]–[10], [19]–[25].

In contrast, a single-task approach treats the continuous

decision problem as a whole without breaking down the

problem into several sub-tasks [26]–[31]. Here, the challenge

is to solve the problem in a reasonable time, so that online

execution on the real robot becomes feasible. In the last few

years, traditional legged locomotion research experienced a

large amount of pioneering work in the field of MPC [26]–

[29], [32] that now reliably runs on quadrupedal robots,

like ANYmal [33], [34], and MIT Cheetah [35]. Another

class of single-task optimization problems involves trajectory

optimization (TO) that precomputes complex trajectories

over a time horizon offline [31], [36]–[38]. Hybrid loco-

motion platforms, e.g., Skaterbots [16], RoboSimian [39]

and walking excavators [40], provide a similar approach

to motion planning over flat terrain by solving a nonlinear

programming (NLP) problem.

The dynamic model and underlying foothold heuristic are

two essential aspects of continuous decision-making:

Dynamic Models: Optimization-based methods depend

on the choice of model complexity. Each dynamic model

comes with its assumptions. For example, the linear inverted

pendulum (LIP) model controls only the motion of the center

of mass (COM) position and acts as a substitute for the

contact forces. Here, the zero-moment point (ZMP) [41] is

constrained to lie inside the support polygon [4], [5], [8],

[42]–[46]. These approaches result in fast update rates at the

cost of inaccurate modeling of the real robot.

The real model can be approximated more accurately with

a single rigid body dynamics (SRBD) model, which assumes

that the joint accelerations’ momentum is negligible and that

the full system’s inertia remains similar to some nominal

configuration. Recent years showed impressive results, and

many different research groups have adopted this more

complex model [28], [29], [33], [35], [37], [38], [47].

Finally, the rigid body dynamics model only assumes non-

deformable links, and the equations of motion (EOM) can

be rewritten as the Centroidal dynamics model [30], [31],

[48]. Such a dynamic model is common in TO and provides

a general approach to hybrid locomotion [16]. Due to the

increased complexity, these hybrid motions are impractical

to update online with feedback control.

Foothold Heuristics: As described in Section I-A.1, a

decomposed-task approach is completed in two stages, where

a heuristic is needed to connect the feet and torso planning

stages. For example, a common method in legged locomotion

designs foothold positions based on the Raibert heuristic [49]

with a capture-point-based feedback term [50]. The work

in [35] regularizes a single-task MPC using such kinds of

heuristics, which might guide the optimization problem to-

wards sub-optimal solutions due to the heuristic’s simplicity.

In our previous work, this approach is also referred to as

inverted pendulum models [18]. Its design is not intuitive

for hybrid locomotion since it assumes a single foothold.

2) Discrete Decision-Making: Gaits in legged robots are

often hand-tuned and time-based. Moreover, appropriate se-

quences of contact timings become hard to design when it

comes to wheeled-legged robots, as shown in Fig. 1.

Including discrete decision variables into the continuous

decision-making results in a holistic approach, as shown

by [36], [38], [51], [52]. These approaches achieve impres-

sive results, but their algorithms are currently impractical

to run online on the real robot in a feedback control loop.

Finding gait sequences in a separate task might reduce the

problem’s complexity and make online execution on the

robot feasible. By considering the impulses that the legs can

deliver, online gait adaptation is shown by the MIT Cheetah

robot [53]. The authors, however, reduce the problem to 2D

due to the computational complexity of the 3D case and split

the continuous motion planning into decomposed tasks.

B. Contribution

We extend the related work with a whole-body MPC

allowing for online gait sequence adaptation. The former

finds the robot’s torso and wheels’ motion in a single task

by introducing a novel kinodynamic model of a wheeled-

legged robot that incorporates the wheels as moving ground

contacts with a fixed joint position and an accurate estimation

of the rolling constraint. Moreover, the MPC optimizes the

joint velocity and ground reaction force simultaneously and

allows for a single set of parameters for all hybrid motions,

which enables us to adapt the sequences of contact and swing

timings. In short, our main contributions are:

1) Hybrid Locomotion. We evaluate whole-body MPC

for a wheeled-legged robot, providing a single-task approach

that automatically discover complex and dynamic motions

that are impossible to find with a decomposed-task approach.

Due to the kinodynamic model, our framework accurately

captures the real robot’s rolling constraint and dynamics.

2) Comparison. We compare the performance of a

decomposed- and single-task approach on the same robotic

platform. In this regard, we introduce a quantity that allows

us to compare different motion planning algorithms through

the prediction accuracy, which describes how well a receding

horizon planner can predict the robot’s future state.

3) Discrete Decisions. Our MPC performs all behaviors

with the same set of parameters, enabling flexibility regard-

ing the gait sequence and allowing us to propose a concept

to quantify kinematic leg utilities for online gait sequence

generation without the need for predefined contact timings

and lift-off sequences. This automatic gait discovery lets



wheeled quadrupedal robots, as depicted in Fig. 1, to co-

ordinate aperiodic behavior and reduce the COT drastically.

II. PROBLEM FORMULATION

The general MPC formulation is to find the control input

of the following optimization over a receding horizon T

based on the latest state measurement x0. Its optimized

control policy is applied to the robot at each iteration until

an updated policy is available.

minimize
u(·)

φ(x(T )) +

∫ T

0

l(x(t),u(t), t)dt, (1a)

subjected to ẋ(t) = f(x(t),u(t), t), (1b)

x(0) = x0, (1c)

g1(x(t),u(t), t) = 0, (1d)

g2(x(t), t) = 0, (1e)

h(x(t),u(t), t) ≥ 0. (1f)

where x(t) is the state vector and u(t) is the control input

vector at time t. Here, l(·) is the time-varying running cost,

and φ(·) is the cost at the terminal state x(T ). The state-input

equality constraint (1d), pure state equality constraint (1e),

and inequality constraint (1f) are handled by a Lagrangian

method, penalty method, and relaxed barrier function, re-

spectively. Our MPC formulation relies on the sequential

linear quadratic (SLQ) approach of [28] with the feedback

policy of [33], which is a differential dynamic programming

(DDP) [54] based algorithm for continuous-time systems.

Fig. 2 visualizes our complete locomotion controller that

is verified in challenging experiments at the end of this paper.

In the following, we introduce our main contributions, the

MPC’s implementation and online gait sequence generation

for wheeled-legged robots, in more detail.

III. HYBRID LOCOMOTION

The remainder of this section proposes a solution for hy-

brid locomotion, as depicted in Fig. 1, which is challenging

due to the additional motion along the rolling direction,

making the design of motion primitives and gait sequences

impossible to hand-tune.

A. Model Predictive Control Implementation

In this work, we avoid motion primitives by proposing

a single-task MPC optimizing over the robot’s whole-body

variables. We continue with the underlying wheeled-legged

robot’s model, and the MPC’s cost function and constraints.

1) Modeling: Adding a full model of a wheel increases

the MPC’s number of states and inputs n by two per

leg, which increases the optimization time since the SLQ’s

backward pass scales by (n)3. As shown in Fig. 3, we model

the robot’s wheel as a moving point contact with a fixed joint

position, which can be translated into wheel inputs through

the wheel’s contact velocity and radius. With this novel

formulation, the MPC’s optimization time does not increase

compared to legged robots [33] despite the additional DOF.

We let the frame Ei be fixed at a leg’s endpoint, i.e., the

point on the wheel that is in contact with the ground during

Robot State

Desired Motion Plan

Tracking Controller

Model Predictive Control

Gait Sequence

Gait Sequence
Generation

Torque Commands

Reference Velocity/Trajectory

Fig. 2. Overview of the locomotion controller. The gait sequence generator
automatically transforms reference trajectories from a higher-level planner or
operator device into lift-off and touch-down sequences. These gait sequences
are fed into the MPC that optimizes joint velocities and contact forces over
a time horizon T . Finally, a tracking controller, e.g., [55], transforms the
desired motion plan into torque references τ .

Fig. 3. Sketch of the rolling constraint with the underlying wheel model
as a moving point contact with a fixed joint position. The image shows
each direction of the end-effector velocity vEi

(x,u), end-effector contact
position rEi

(qj), and friction cone constraint λEi
∈ C(n, µC).

stance phase, and define this point as a leg’s end-effector.

This enables us to model conventional point-foot and wheels

by changing the kinematic constraints and avoids additional

constraints concerning the wheel. The state vector x(t) and

control input vector u(t) in (1) are

x(t) =
[
θT pT ωT vT qT

j

]T
∈ R

12+nj , (2a)

u(t) =
[
λT
E uT

j

]T
∈ R

3ne+nj , (2b)

where nj = 12 and ne = 4 are the number of joints

(excluding the wheel) and legs. The elements θ, p, ω, v and

qj of the state vector in (2a) refer to the torso’s orientation

in Euler angles, torso’s position in world frame W , COM’s

angular rate, COM’s linear velocity, and joint positions,

respectively. Moreover, the control inputs in (2b) are the end-

effector contact forces λE and joint velocities uj .

2) Cost Function: We are interested in following external

commands fed into a quadratic cost function of the state and



control input vector. Thus, the time-varying running cost in

(1a) is given by

l(x(t),u(t), t) =
1

2
x̃(t)TQx̃(t) +

1

2
ũ(t)TRũ(t), (3)

where Q is a positive semi-definite Hessian of the state

vector error x̃(t) = x(t) − xref(t) and R is a positive

definite Hessian of the control input vector error ũ(t) =
u(t)−uref(t). The error vector require reference values for

the whole-body, e.g., the torso’s reference position and linear

velocity are computed through an external reference trajec-

tory2 rB,ref(t) of the torso B. The remaining variables of

x(t) and u(t) are regularized to some nominal configuration.

3) Equations of Motion: The system’s dynamics (1b) is

based on a kinodynamic model of a wheeled quadrupedal

robot. It defines the SRBD model along with the kinematics

for each leg while treating the wheels as moving ground

contacts with a locked rotational angle. SRBD assumes that

the limb joints’ momentum is negligible compared with the

lumped COM inertia and the inertia of the full-body system

stays the same as to some nominal joint configuration. The

EOM of the SRBD is given by

θ̇ = T (θ)ω, (4a)

ṗ = RWB(θ)v, (4b)

ω̇ = I−1

(
−ω × Iω +

ne∑

i=1

rEi
(qj)× λEi

)
, (4c)

v̇ = g(θ) +
1

m

ne∑

i=1

λEi
, (4d)

q̇j = uj , (4e)

where RWB(θ) ∈ SO(3) represents the rotation matrix that

projects the components of a vector from the torso frame B

to the world frame W , T (θ) is the transformation matrix

from angular velocities in the torso frame B to the Euler

angles derivatives in the world frame W , I is the moment

of inertia of the COM taken at the nominal configuration

of the robot, m is the total mass, g(θ) is the gravitational

acceleration in torso frame B, and rEi
(qj) is the end-

effector’s contact position of leg i with respect to (w.r.t.) the

COM (see Fig. 3), which is a function of the joint positions

and thus, the kinodynamic model requires (4e).

4) Rolling Constraint: The contact constraint of tradi-

tional legged robots is modeled through the end-effectors’

velocities, and when in contact, these velocities are restricted

to zero in all directions. Wheeled-legged robots, on the other

hand, can execute motions along the rolling direction when in

contact. Thus, the end-effector constraint of leg i in contact

is represented by

λEi
∈ C(n, µC), (5a)

πEi,⊥(vEi
(x,u)) = 0, (5b)

vEi
(x,u) · n = 0, (5c)

2The reference trajectory is generated from an external source, e.g., an
operator device or a navigation planner. In case of reference velocities, i.e.,
the linear vref and angular velocity vector ωref of the COM, the reference
trajectory can be computed by integrating these velocities.

where C(n, µC) and n are the friction cone with its friction

coefficient µC visualized in Fig. 3 and the local surface

normal in world frame W , respectively. The rolling con-

straint’s sketch in Fig. 3 shows each direction of the end-

effector velocity vEi
(x,u). Due to the kinodynamic model,

the projection πEi,⊥(·) in (5b) of the end-effector velocity

in world frame vEi
(x,u) onto the perpendicular direction

of the rolling direction can be easily computed through

forward kinematics. With this formulation, legs in contact

are constrained, such that, the velocity along the rolling

direction is left unconstrained, i.e, πEi,‖(vEi
(x,u)) ∈ R.

In contrast to SRBD models without the robot’s kinematics,

our approach can accurately estimate the rolling constraint

without introducing needless heuristics for its direction.

While leg i is in air, the constraint switches to

λEi
= 0, (6a)

vEi
(x,u) · n = c(t), (6b)

where legs in the air follow a predefined swing trajectory

c(t) in the direction of the terrain normal n and the ground

reaction forces λEi
are set to zero.

B. Gait Sequence Generation

The MPC’s implementation as a single task enables a

single set of parameters for all motions, which further allows

for the adaptation of its lift-off and touch-down timings. In

this work, we exemplary show the implementation of a gait

timings generation for multimodal robots with non-steerable

wheels. Gait timings and their sequences are discovered

through a kinematic utility of each leg. Given the external

reference trajectory rB,ref(t), aperiodic sequences of contact

and lift-off timings are generated over a time horizon T .

1) Kinematic Leg Utility: For the robot to locomote, i.e.,

drive or walk, it needs to have a sense of each leg’s utility

ui(t) ∈ [0, 1]. If the utility of one leg approaches zero, the leg

needs to be recovered by a swing phase. In contrast to [53],

where the utility is based on impulse generation capabilities

and used as a metric for a decomposed-task approach, we

propose that the kinematic capability is of primary impor-

tance for gait adaptation of a single-task approach. This

utility quantifies the usefulness of a leg in terms of remaining

in kinematic reach.

Wheeled quadrupedal robots with non-steerable wheels,

as shown in Fig. 1, have a fixed rolling direction. While

in contact, the trajectory of the wheel rEi,ref(t) = rEi
+

πEi,‖(rB,ref(t)) is kinematically constrained, where rEi
is

the measured end-effector position of wheel i, and the projec-

tions πEi,‖(·) and πEi,⊥(·) are introduced in Section III-A.4.

By defining the utility as an ellipse, we can distinguish the

decay along and lateral to the rolling direction. Therefore, the

leg’s utility ui(t) ∈ [0, 1] is defined as

ui(t) = 1−

√(
πEi,‖(r̃Ei

(t))

λ‖

)2

+

(
πEi,⊥(r̃Ei

(t))

λ⊥

)2

,

(7)

where the position error is given by r̃Ei
(t) = rB,ref(t) +

rBDi
− rEi,ref(t), and rBDi

is the position from the torso



B to the recent contact position at touch-down Di of leg i.

λ‖ and λ⊥ are the two half-axis lengths of the ellipse along

and lateral to the rolling direction and depend on the leg’s

kinematic reach.

2) Gait Timings Generation: The leg remains in contact

as long as its utility ui(t) remains above a certain threshold

ū ∈ [0, 1]. If a leg’s utility falls below the threshold, i.e.,

the leg is close to its workspace limits, then this leg is

recovered by a swing phase with constant swing duration.

Similar to [53], a multi-layered swing generator is proposed

to achieve meaningful leg coordination:

1) Utility Generation. Calculate the utility for all legs

ui(t) over a time horizon T .

2) Utility Check. Find the time t∗ when ui(t) < ū and

give legs with the lowest utility priority to add a swing

phase with constant swing duration at time t∗.

3) Neighboring Legs Check. A swing phase is added if

the neighboring legs3 are not swinging. Otherwise, the

swing phase is postponed until the neighboring legs

are in contact—such an approach constrains the gaits

to pure driving, hybrid static, and hybrid trotting gaits.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We validate our whole-body MPC and gait sequence gen-

eration in several real-world experiments where we compare

our approach’s performance with the motion planner intro-

duced in [18]. It is based on a decomposed-task approach,

i.e., the wheel and torso trajectories are solved sequentially.

To the best of our knowledge, this is the first time a study

compares the performance of a single- and decomposed-

task approach on the same robotic platform. Table I gives

an overview of both approaches and lists their capabilities.

Each element is described in more detail in the following

sections, which reports on experiments conducted with ANY-

mal equipped with non-steerable, torque-controlled wheels

(see Fig. 1). A video4 showing the results accompanies this

paper.

A. Experimental Setup

Our hybrid locomotion planner, tracking controller [55],

and state estimator [18], including the terrain normal esti-

mation, run in concurrent threads on a single PC (Intel i7-

8850H, 2.6 GHz, Hexa-core 64-bit). The robot is entirely

self-contained in computation, and all optimization problems

are run online due to fast solver times.

B. Prediction Error

Quantitatively comparing receding horizon planners based

on the real robot’s performance is a non-trivial task. In most

cases, our community reports merely on the optimization

time, success rate, and task difficulty without measuring

its performance compared to other algorithms. Our work

provides a novel quantity that describes how well a receding

horizon planner can predict the robot’s future state.

3For the quadruped’s left-front leg, the neighboring legs are the right-front
and left-hind legs.

4Available at https://youtu.be/_rPvKlvyw2w

TABLE I

CAPABILITIES [56] OF OUR PRESENTED WHOLE-BODY MPC.

Whole-Body MPC Decomp. Task [18]

Dynamic model
(accuracy)

Kinodynamic model ZMP model

Number of
optimizations

Single optimization
Separate wheel and
torso optimization

Foothold
heuristic

No heuristics
Inverted pendulum

model

Update rate 20-50 Hz 100-200 Hz

Reliability High Medium

Maximum reliable
speed

2.5 m/s 1.5 m/s

Accelerations High Low

Optimized components

Torso motion 6D 3D
Footholds 3D 2D

Swing leg motion ✓ ✓

Contact force ✓ ✗

Step timing/sequence ✗ ✗

Difficulty of shown task

Line and point contacts ✓ ✓

Flight phases ✓ ✓

Inclined terrain ✓ ✓

Non-flat terrain ✓ ✗

Step timing/sequence
adaptation

✓ ✗

The optimization problem’s ability to accurately predict

the robot’s state over a predefined time horizon is crucial

for these planning algorithms. Measuring how accurately

the underlying algorithm captures the real system is crucial.

Therefore, we define the prediction error ∆ppred as

∆ppred = ‖p∗
−T (T )− pmeas‖, ∀vref ,ωref = const., (8)

where p∗
−T (T ) is the predicted COM position, i.e., its ter-

minal position optimized T s ago, and pmeas is the measured

position of the COM. Moreover, the prediction error is only

computed for constant reference velocities vref and ωref .

C. Decomposed- vs Single-Task Motion Planning

In the following, we use a fixed trotting gait and compare

the two approaches’ performance in terms of their prediction

error, dynamic model, and foothold heuristic.

1) Prediction Accuracy: Fig. 4 compares the performance

of our whole-body MPC with the decomposed-task approach

described in [18]. Especially at higher commanded velocities,

the prediction error of the MPC outperforms the prediction

accuracy of our previously published controller, which is

also prone to failures at higher speeds. Decoupling the

locomotion problem into a wheel and torso task makes it

untrackable at higher speeds. The actual wheel and torso

trajectories start to diverge and require an additional heuristic

to maintain balance. Our single-task approach, however,

solves this problem and improves the prediction accuracy

by up to 71 %, making fast locomotion feasible.

2) Dynamic Model: Various approaches use a LIP model

that optimizes over the ZMP as a substitute for the contact

forces. These approaches generate trajectories of the COM

https://youtu.be/_rPvKlvyw2w
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Fig. 4. Prediction error for T = 0.8s of the COM while hybrid trotting
on flat terrain. The upper figure depicts the result of our proposed whole-
body MPC, and the lower figure shows the result of our previously pub-
lished decomposed-task approach [18]. With our new locomotion controller,
we achieve a prediction error of ∆ppred = 0.061 ± 0.044m, which
outperforms the result of the decomposed-task approach with ∆ppred =
0.214±0.061m. Our single-task approach improves the prediction accuracy
by approximately 71 %, which becomes evident at higher commanded linear
velocities and yaw rates.

so that the ZMP lies inside the support polygon spanned by

the legs in contact. The question arises whether this approach

accurately captures the real dynamics. Therefore, we log the

ZMP of [18] while running our MPC using a more realistic

kinodynamic model of a wheeled-legged robot.

The result in Fig. 5 shows that while executing dynamic

motions, the ZMP diverges from the support polygon. There-

fore, this simplified model can not discover motions as

depicted in Fig. 6. Furthermore, the idea of the ZMP only

holds in the presence of co-planar contacts [57]. Therefore,

it can not accurately capture environments, as shown in the

second row of Fig. 1, and thus, we need a more accurate

model like the kinodynamic model presented here.

3) Foothold Heuristic: While the whole-body MPC

approach does not integrate any foothold heuristic, the

decomposed-task approach relies on the inverted pendulum

model based on a feedforward and feedback part. The former

aligns the motions with the reference trajectory assuming

a constant velocity of the torso. Simultaneously, the lat-

ter corrects the foothold under different conditions, such

as modeling errors, external disturbances, and transitions.

Similar to the result in Section IV-C.2, Fig. 5 shows that

the inverted pendulum model diverges from our optimized

footholds at higher accelerations due to the assumption of

a constant reference velocity of the torso, which is tried to
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Fig. 5. Results of our whole-body MPC while commanding high torso
accelerations, as shown in Fig. 6. The upper two figures show the plot
of the commanded linear and rotational velocities. As shown in the third
plot, these motions are not feasible with a ZMP model since the ZMP lies
outside the support polygon, i.e., the robot is supposed to fall. Similarly, the
inverted pendulum model’s heuristic in the last plot starts diverging from
our approach’s complex behaviors.

Fig. 6. High accelerations using the whole-body MPC approach. The robot
executes a fast change of direction between 2 and -2 m/s, which forces the
optimization problem to find complex motions that can not be captured by
the LIP, as shown in Fig. 5.

be compensated through the feedback term. Moreover, the

inverted pendulum model adapts to unforeseen disturbances

while stepping and is originally not designed for wheeled-

legged robots. Handcrafting a heuristic as shown in [18] that

finds more dynamic and hybrid trajectories on the ground

is cumbersome. Our approach discovers complex behaviors

automatically (see Fig. 6) thanks to the single-task approach.

D. Gait Sequence Generation

Fig. 7 shows the result of the gait sequence generation

in combination with the whole-body MPC. The plot shows

three time snippets where the robot executes high linear ve-

locities in combination with no, medium, and high rotational

velocities. The gait sequence generator based on kinematic

leg utilities intuitively switches between pure driving, static

gaits (three legs in contact), and a trotting gait. As can be

seen in the third plot of Fig. 7, we can lower the COT by up

to 85 % thanks to the reduced number of steps. Moreover,

pure driving achieves a COT of around 0.1 at 2 m/s, which

is a factor of two higher than hybrid trotting [18].

One of our MPC’s benefits is that it uses one set of

cost terms for each gait. By contrast, the decomposed-task



0 5 10 15 20 25

0 5 10 15 20 25

0

1

2

0 5 10 15 20 25

0

1

2

0 5 10 15 20 25

0

0.5

1

Fig. 7. Contact timings diagram while running the gait sequence generator
and whole-body MPC. The two upper plots show the linear and rotational
velocity of the COM, the third plot depicts the mechanical COT [58]
including its average values, and the corresponding contact states are
displayed in the four lower rows (left-front (LF), right-front (RF), left-hind
(LH), and right-hind leg (RH)). The robot performs three different motions
at high linear velocities in combination with no (1-5 s), medium (5-22 s),
and high rotational velocities (22-23 s). As shown in the lower images, the
gait sequence generator results in pure driving (blue box), hybrid static
gaits (green box), i.e., one leg at a time, and hybrid trotting gaits (red box),
respectively. Especially the pure driving phases reduce the COT drastically.

approach, as described in [18], requires re-tuning the cost

terms for each gait pattern. Therefore, it is not feasible to

run our gait timings generator with such an approach without

adding more heuristics that interpolate between sets of pre-

tuned cost terms.

V. CONCLUSIONS

We present a novel whole-body MPC for hybrid locomo-

tion allowing for online gait sequence adaptation. It finds

the robot’s torso and wheels motion in a single task, where

joint velocity and ground reaction forces are simultaneously

optimized based on a kinodynamic model with moving

ground contacts. The experimental results verify that our

approach improves the model’s accuracy and enables the

robot to automatically discover hybrid and dynamic motions

that are impossible to find through motion templates. Due

to the single set of parameters, the MPC is flexible w.r.t.

the gait sequence. Therefore, we integrate an online gait

sequence generation based on kinematic leg utilities that

makes predefined contact and swing timings obsolete. Our

wheeled-legged robot ANYmal is now, for the first time,

capable of coordinating aperiodic behavior, which decreases

the overall COT of our missions. In future work, we plan

to further extend our (blind) gait sequence generation by

augmenting its utility function with terrain information from

exteroceptive sensors.
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